Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Cell ; 88: 102380, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615643

RESUMO

The use of mesenchymal stem cells (MSCs) in cartilage regeneration has gained significant attention in regenerative medicine. This paper reviews the molecular mechanisms underlying MSC-based cartilage regeneration and explores various therapeutic strategies to enhance the efficacy of MSCs in this context. MSCs exhibit multipotent capabilities and can differentiate into various cell lineages under specific microenvironmental cues. Chondrogenic differentiation, a complex process involving signaling pathways, transcription factors, and growth factors, plays a pivotal role in the successful regeneration of cartilage tissue. The chondrogenic differentiation of MSCs is tightly regulated by growth factors and signaling pathways such as TGF-ß, BMP, Wnt/ß-catenin, RhoA/ROCK, NOTCH, and IHH (Indian hedgehog). Understanding the intricate balance between these pathways is crucial for directing lineage-specific differentiation and preventing undesirable chondrocyte hypertrophy. Additionally, paracrine effects of MSCs, mediated by the secretion of bioactive factors, contribute significantly to immunomodulation, recruitment of endogenous stem cells, and maintenance of chondrocyte phenotype. Pre-treatment strategies utilized to potentiate MSCs, such as hypoxic conditions, low-intensity ultrasound, kartogenin treatment, and gene editing, are also discussed for their potential to enhance MSC survival, differentiation, and paracrine effects. In conclusion, this paper provides a comprehensive overview of the molecular mechanisms involved in MSC-based cartilage regeneration and outlines promising therapeutic strategies. The insights presented contribute to the ongoing efforts in optimizing MSC-based therapies for effective cartilage repair.

2.
J Funct Biomater ; 15(3)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38535259

RESUMO

Bone regeneration poses a significant challenge in the field of tissue engineering, prompting ongoing research to explore innovative strategies for effective bone healing. The integration of stem cells and nanomaterial scaffolds has emerged as a promising approach, offering the potential to enhance regenerative outcomes. This study focuses on the application of a stem cell-laden nanomaterial scaffold designed for bone regeneration in rabbits. The in vivo study was conducted on thirty-six healthy skeletally mature New Zealand white rabbits that were randomly allocated into six groups. Group A was considered the control, wherein a 15 mm critical-sized defect was created and left as such without any treatment. In group B, this defect was filled with a polycaprolactone-hydroxyapatite (PCL + HAP) scaffold, whereas in group C, a PCL + HAP-carboxylated multiwalled carbon nanotube (PCL + HAP + MWCNT-COOH) scaffold was used. In group D, a PCL + HAP + MWCNT-COOH scaffold was used with local injection of bone morphogenetic protein-2 (BMP-2) on postoperative days 30, 45, and 60. The rabbit bone marrow-derived mesenchymal stem cells (rBMSCs) were seeded onto the PCL + HAP + MWCNT-COOH scaffold by the centrifugal method. In group E, an rBMSC-seeded PCL + HAP + MWCNT-COOH scaffold was used along with the local injection of rBMSC on postoperative days 7, 14, and 21. For group F, in addition to the treatment given to group E, BMP-2 was administered locally on postoperative days 30, 45, and 60. Gross observations, radiological observation, scanning electron microscopic assessment, and histological evaluation study showed that group F displayed the best healing properties, followed by group E, group D, group C, and B. Group A showed no healing with ends blunting minimal fibrous tissue. Incorporating growth factor BMP-2 in tissue-engineered rBMSC-loaded nanocomposite PCL + HAP + MWCNT-COOH construct can augment the osteoinductive and osteoconductive properties, thereby enhancing the healing in a critical-sized bone defect. This novel stem cell composite could prove worthy in the treatment of non-union and delayed union fractures in the near future.

3.
Cells ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38474368

RESUMO

Liver cirrhosis poses a global health challenge marked by significant prevalence and mortality. Current therapeutic options are limited by high costs and immune-mediated rejection, necessitating the exploration of innovative strategies to enhance hepatic self-rehabilitation, and counteract the underlying pathological mechanisms. We evaluated the hepatoprotective activity of rat adipose-derived mesenchymal stem cells (ADMSCs) in combination with platelet-rich plasma (PRP) and recombinant human hepatocyte growth factor (rh-HGF) on a rat model of liver fibrosis/cirrhosis induced by bile duct ligation (BDL). Treatment with PRP or rh-HGF alone did not yield significant hepatoprotection in the BDL-induced liver cirrhosis model. However, ADMSC transplantation alone exhibited the potential to alleviate impaired liver conditions. The combination of PRP and rh-HGF demonstrated superior ameliorative effects compared to either treatment alone. Notably, the combination of ADMSC + PRP or ADMSC + rh-HGF significantly enhanced hepatoprotective capacity compared to individual or combined PRP and rh-HGF therapies. Injection of ADMSC via the tail vein reduced inflammation, hepatocyte damage, and collagen deposition, improving overall liver function. This improvement was more pronounced when ADMSC was administered with PRP and rh-HGF versus monotherapy. Our study concludes that ADMSCs exert antifibrotic effects by inhibiting hepatic stellate cell proliferation, collagen synthesis, and inducing apoptosis. ADMSCs also demonstrate immune-modulatory effects and transdifferentiate into hepatic progenitor cells, secreting trophic factors, cytokines, and chemokines that promote impaired liver regeneration. The observed arrest in liver fibrosis progression highlights the potential therapeutic impact of these interventions.


Assuntos
Células-Tronco Mesenquimais , Plasma Rico em Plaquetas , Ratos , Humanos , Animais , Cirrose Hepática/metabolismo , Fibrose , Ductos Biliares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Colágeno/metabolismo , Plasma Rico em Plaquetas/metabolismo
4.
Discov Med ; 36(181): 294-307, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409835

RESUMO

BACKGROUND: Stem cell-based therapies display immense potential in regenerative medicine, highlighting the crucial significance of devising efficient delivery methods. This study centers on a pioneering approach that utilizes Pluronic F127 (PF127) as a thermoresponsive and injectable hydrogel designed for the encapsulation of adipose-derived mesenchymal stem cells (AdMSCs). METHODS: The degradation profile, gelation time, and microstructure of the PF127 hydrogel were thoroughly examined. AdMSCs were isolated, expanded, and characterized based on their multi-lineage differentiation potential. AdMSCs from the third passage were specifically employed for encapsulation within the PF127 hydrogel. Subsequently, the cytotoxicity of the AdMSC-loaded PF127 hydrogel was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and apoptosis assays. RESULTS: Characterized by scanning electron microscopy (SEM), the PF127 hydrogel exhibited a porous structure, indicating its suitability for accommodating AdMSCs and facilitating wound healing. The PF127 hydrogel demonstrated reversible phase transitions, rendering it suitable for in vivo applications. Studies on the gelation time of PF127 hydrogel unveiled a concentration-dependent decrease in gelation time, offering adaptability for diverse medical applications. Analysis of the degradation profile showcased a seven-day degradation period, leading to the decision for weekly topical applications. Cytotoxicity assessments confirmed that AdMSCs loaded into the PF127 hydrogel maintained heightened metabolic activity for up to one week, affirming the safety and appropriateness of the PF127 hydrogel for encapsulating cellular therapeutics. Furthermore, cell apoptosis assays consistently indicated low rates of apoptosis, emphasizing the viability and robust health of AdMSCs when delivered within the hydrogel. CONCLUSIONS: These findings underscore the vast potential of PF127 hydrogel as a versatile and biocompatible delivery system for AdMSCs in the realm of regenerative medicine. Boasting adjustable gelation properties and a remarkable capacity for cell encapsulation, this pioneering delivery system presents a promising path for applications in tissue engineering and wound healing. Ultimately, these advancements propel and elevate the landscape of regenerative medicine.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Humanos , Hidrogéis/química , Poloxâmero/química
5.
Cell Physiol Biochem ; 57(6): 452-477, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37978922

RESUMO

BACKGROUND/AIMS: All body functions are activated, synchronized and controlled by a substantial, complex network, the nervous system. Upon injury, pathophysiology of the nerve injury proceeds through different paths. The axon may undergo a degenerative retraction from the site of injury for a short distance unless the injury is near to the cell body, in which case it continues to the soma and undergoes retrograde neuronal degeneration. Otherwise, the distal section suffers from Wallerian degeneration, which is marked by axonal swelling, spheroids, and cytoskeleton degeneration. The objective of the study was to evaluate the potential of mesenchymal stem cell laden neural scaffold and insulin-like growth factor I (IGF-I) in nerve regeneration following sciatic nerve injury in a rat model. METHODS: The animals were anaesthetized and a cranio-lateral incision over left thigh was made. Sciatic nerve was exposed and crush injury was introduced for 90 seconds using haemostat at second locking position. The muscle and skin were sutured in routine fashion and thus the rat model of sciatic crush injury was prepared. The animal models were equally distributed into 5 different groups namely A, B, C, D and E and treated with phosphate buffer saline (PBS), carbon nanotubes based neural scaffold only, scaffold with IGF-I, stem cell laden scaffold and stem cell laden scaffold with IGF-I respectively. In vitro scaffold testing was performed. The nerve regeneration was assessed based on physico-neuronal, biochemical, histopathological examination, and relative expression of NRP-1, NRP-2 and GAP-43 and scanning electron microscopy. RESULTS: Sciatic nerve injury model with crush injury produced for 90 seconds was standardized and successfully used in this study. All the biochemical parameters were in normal range in all the groups indicating no scaffold related changes. Physico-neuronal, histopathological, relative gene expression and scanning electron microscopy observations revealed appreciable nerve regeneration in groups E and D, followed by C and B. Restricted to no regeneration was observed in group A. CONCLUSION: Carbon nanotubes based scaffold provided electro-conductivity for proper neuronal regeneration while rat bone marrow-derived mesenchymal stem cells were found to induce axonal sprouting, cellular transformation; whereas IGF-I induced stem cell differentiation, myelin synthesis, angiogenesis and muscle differentiation.


Assuntos
Lesões por Esmagamento , Células-Tronco Mesenquimais , Nanotubos de Carbono , Neuropatia Ciática , Ratos , Animais , Ratos Wistar , Fator de Crescimento Insulin-Like I/farmacologia , Fator de Crescimento Insulin-Like I/uso terapêutico , Neuropatia Ciática/tratamento farmacológico , Neuropatia Ciática/patologia , Nervo Isquiático/lesões , Regeneração Nervosa/fisiologia , Lesões por Esmagamento/tratamento farmacológico , Lesões por Esmagamento/patologia , Células-Tronco Mesenquimais/patologia , Colágeno
6.
Cell Tissue Bank ; 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542003

RESUMO

Biomaterials capable of managing wounds should have essential features like providing a natural microenvironment for wound healing and as support material for stimulating tissue growth. Eggshell membrane (ESM) is a highly produced global waste due to increased egg consumption. The unique and fascinating properties of ESM allow their potential application in tissue regeneration. The wound healing capacity of bone marrow-derived mesenchymal stem cells (BM-MSCs), ESM, and their combination in rabbits with full-thickness skin defect (2 × 2 cm2) was evaluated. Twenty-five clinically healthy New Zealand White rabbits were divided into five groups of five animals each, with group A receiving no treatment (control group), group B receiving only fibrin glue (FG), group C receiving FG and ESM as a dressing, group D receiving FG and BM-MSCs, and group E receiving a combination of FG, ESM, and BM-MSCs. Wound healing was assessed using clinical, macroscopical, photographic, histological, histochemical, hematological, and biochemical analysis. Macroscopic examination of wounds revealed that healing was exceptional in group E, followed by groups D and C, compared to the control group. Histopathological findings revealed improved quality and a faster rate of healing in group E compared to groups A and B. In addition, healing in group B treated with topical FG alone was nearly identical to that in control group A. However, groups C and D showed improved and faster recovery than control groups A and B. The macroscopic, photographic, histological, and histochemical evaluations revealed that the combined use of BM-MSCs, ESM, and FG had superior and faster healing than the other groups.

7.
Cell Physiol Biochem ; 55(6): 739-760, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34816679

RESUMO

BACKGROUND/AIMS: Liver is considered as the vital organ in the body as it performs various essential functions. Following an injury to the liver, the repair process even though initially beneficial becomes pathogenic when it is not controlled appropriately. Extensive accumulation of extracellular matrix (ECM) components can ultimately lead to cirrhosis and liver failure. Thus, the ideal strategy to treat a liver injury is to generate new hepatocytes replacing damaged cells without causing excessive ECM deposition. The objective of this study was to evaluate the potential of mesenchymal stem cells, conditioned media and murine epidermal growth factor (m-EGF) in liver regeneration following partial hepatectomy in a rat model. METHODS: The animals were anaesthetized and a midline laparotomy was done. The liver was exposed and the left lateral and median lobes were ligated and resected out (about 65-70% of total liver mass). The muscles and skin were sutured in routine fashion and thus the rat model of partial hepatectomy was prepared. The animal models were equally distributed into 4 different groups namely A, B, C and D and treated with PBS, conditioned media, mesenchymal stem cells and epidermal growth factor respectively. The liver regeneration was assessed based on clinical, haemato-biochemical, colour imaging, histopathological and immune-histochemical parameters. RESULTS: Partial hepatectomy model with surgical removal of 65-70% liver lobe was standardized and successfully used in this study. Alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), bilirubin, transaminases were significantly higher (P<0.05) in group A indicating that the liver damage was not restored properly. Colour digital imaging, histopathological and immune-histochemistry observations revealed that a better liver regeneration was observed in groups C and D, followed by groups B and A. Regeneration coefficient calculated based on liver weight was higher in groups C and D as compared to group A. CONCLUSION: Rat bone marrow-derived mesenchymal stem cells were found to induce hepatocytes proliferation; whereas EGF induced more angiogenesis. Conditioned media was not as effective as stem cells and EGF in liver tissue repair.


Assuntos
Hepatectomia , Regeneração Hepática/efeitos dos fármacos , Fígado/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Meios de Cultivo Condicionados/farmacologia , Feminino , Fígado/cirurgia , Masculino , Ratos , Ratos Wistar
8.
Adv Exp Med Biol ; 1345: 165-191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34582023

RESUMO

Biomaterials science encompasses elements of medicine, biology, chemistry, materials, and tissue engineering. They are engineered to interact with biological systems to treat, augment, repair, or replace lost tissue function. The choice of biomaterial depends on the procedure being performed, the severity of the patient's condition, and the surgeon's preference. Prostheses made from natural-derived biomaterials are often derived from decellularized extracellular matrix (ECM) of animal (xenograft) or human (allograft) origin. Advantages of using ECM include their resemblance in morphology and three-dimensional structures with that of tissue to be replaced. Due to this, scientists all over are now focusing on naturally derived biomaterials which have been shown to possess several advantages compared to synthetic ones, owing to their biocompatibility, biodegradability, and remodeling properties. Advantages of a naturally derived biomaterial enhance their application for replacement or restoration of damaged organs/tissues. They adequately support cell adhesion, migration, proliferation, and differentiation. Naturally derived biomaterials can induce extracellular matrix formation and tissue repair when implanted into a defect by enhancing attachment and migration of cells from surrounding environment. In the current chapter, we will focus on the natural and synthetic dermal matrix development and all of the progress in this field.


Assuntos
Engenharia Tecidual , Tecidos Suporte , Animais , Materiais Biocompatíveis , Adesão Celular , Matriz Extracelular , Humanos
9.
Tissue Eng Regen Med ; 18(2): 235-251, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33145744

RESUMO

BACKGROUND: Full thickness burn wounds are lack of angiogenesis, cell migration, epithelialisation and finally scar tissue formation. Tissue engineered composite graft can provide sustained release of growth factor and promote the wound healing by cell migration, early angiogenesis and proliferation of extracellular matrix and wound remodeling. The objective of this study was to evaluate the gene embedded (pDNA-platelet-derived growth factor, PDGF-B) porcine acellular urinary bladder matrix with transfected mesenchymal stem cells (rBMSC) on healing of full thickness burn wound in rat model. METHODS: Full thickness burn wound of 2 × 2 cm size was created in dorsum of rat model under general anesthesia. Burn wounds were treated with silver sulfadiazine; porcine acellular urinary bladder matrix (PAUBM); PAUBM transfected with pDNA-PDGF-B; PAUBM seeded with rBMSC; PAUBM seeded with rBMSC transfected with pDNA-PDGF-B in groups A, B, C, D and E respectively. The wound healing was assessed based on clinical, macroscopically, immunologically, histopathological and RT-qPCR parameters. RESULTS: Wound was significantly healed in group E and group D with early extracellular matrix deposition, enhanced granulation tissue formation and early angiogenesis compared to all other groups. The immunologic response against porcine acellular matrix showed that PDGF-B gene activated matrix along with stem cell group showed less antibody titer against acellular matrix than other groups in all intervals. PDGF gene activated matrix releasing the PDGF-B and promote the healing of full thickness burn wound with neovascularization and neo tissue formation. PDGF gene also enhances secretion of other growth factors results in PDGF mediated regenerative activities. This was confirmed in RT-qPCR at various time intervals. CONCLUSION: Gene activated matrix encoded for PDGF-B protein transfected stem cells have been clinically proven for early acceleration of angiogenesis and tissue regeneration in burn wounds in rat models. Evaluation of PDGF-B gene-activated acellular matrix and mesenchymal stem cell in full thickness skin burn wound in rat.


Assuntos
Derme Acelular , Queimaduras , Transplante de Células-Tronco Mesenquimais , Animais , Queimaduras/terapia , Fator de Crescimento Derivado de Plaquetas/genética , Ratos , Suínos , Cicatrização
10.
J Tissue Eng Regen Med ; 14(7): 955-963, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392634

RESUMO

Research on prostheses for repairing abdominal wall defects has progressed through past decades for developing an ideal prosthesis. The study was designed to compare different extracellular matrix (ECM) derived biological prostheses as alternate to conventional synthetic polymeric prostheses for the repair of full thickness abdominal wall defects. Five biological scaffolds derived from bovine diaphragm, bovine aorta, bovine gall bladder, porcine gall bladder, and rabbit skin were prepared and screened for their in vitro biocompatibility. Decellularized ECMs were subjected to various biocompatibility analyses, namely, water absorption potential, matrix degradation analysis, biomechanical testing, and cytocompatibility analysis. Though the rabbit skin displayed maximum biomechanical strength, due to its rapid degradation, it failed to fulfill the criteria of an ideal prosthesis. ECMs derived from bovine diaphragm and aorta were found to be superior than others based upon hydration and matrix degradation analysis, with best scores for bovine diaphragm followed by bovine aorta. The bovine diaphragm and aorta also displayed sufficient biomechanical strength, with diaphragm being the second highest (next to rabbit skin), in biomechanical strength followed by aorta. None of the biological prosthesis revealed any cytotoxicity. Thus, bovine diaphragm and aorta derived ECM fulfill the necessary criteria for their use as biological prosthesis. Because these prostheses are biocompatible, apart from their low cost, ease of availability, and simple preparation, they present a potential alternative to synthetic prosthesis for repair of abdominal wall defects, especially in veterinary patients.


Assuntos
Parede Abdominal/cirurgia , Bioprótese , Matriz Extracelular/química , Matriz Extracelular/transplante , Teste de Materiais , Tecidos Suporte/química , Animais , Bovinos , Coelhos , Suínos
11.
Sci Rep ; 9(1): 13485, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530877

RESUMO

We report detection of Baculoviral inhibitor of apoptosis repeat containing-5 (BIRC5) protein biomarker in dog serum by label-free surface plasmon resonance (SPR) immunosensor. Initially, overexpression of BIRC5 in canine mammary tumour (CMT) tissues was confirmed by real-time PCR. Recombinant BIRC5 was produced and protein specific antibodies developed in guinea pig specifically reacted with native protein in immunohistochemistry and immunocytochemistry. SPR immunosensor was developed by fabricating anti-BIRC5 antibodies on gold sensor disc. The equilibrium dissociation constant, (KD = kd/ka) was 12.1 × 10-12 M; which indicates that antibodies are of high affinity with sensitivity in picomolar range. The SPR assay could detect as low as 6.25 pg/ml of BIRC5 protein in a calibration experiment (r2 = 0.9964). On testing real clinical samples, 95% specificity and 73.33% sensitivity were recorded. The average amount of serum BIRC5 in dogs with CMT was 110.02 ± 9.77 pg/ml; whereas, in non-cancerous disease conditions, 44.79 ± 4.28 pg/ml and in healthy dog sera 30.28 ± 2.99 pg/ml protein was detected. The SPR immunosensor for detection of BIRC5 in dog sera is reported for the first time and this may find prognostic and diagnostic applications in management of CMT. In future, 'on-site' sensors can be developed using this technique for near-patient testing.


Assuntos
Biomarcadores Tumorais , Doenças do Cão/diagnóstico , Doenças do Cão/metabolismo , Neoplasias Mamárias Animais/diagnóstico , Neoplasias Mamárias Animais/metabolismo , Ressonância de Plasmônio de Superfície , Survivina/metabolismo , Animais , Técnicas Biossensoriais , Doenças do Cão/etiologia , Cães , Imunoensaio , Imuno-Histoquímica , Limite de Detecção , Neoplasias Mamárias Animais/etiologia , Reação em Cadeia da Polimerase , Curva ROC , Proteínas Recombinantes , Ressonância de Plasmônio de Superfície/métodos
12.
J Stem Cells Regen Med ; 15(2): 24-34, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31983855

RESUMO

Mammary gland tumours are the second most common neoplasm representing about 40-50% of all neoplasm after skin tumour, but the majority of these tumours occur in intact/ non spaying female dogs. Surgical excision of the benign tumour is the standard treatment of canine mammary tumours. Chemotherapy is the choice of treatment if the tumour is malignant or shows evidence of invasion into lymph or blood vessels, however, they showed different side effects and their success rate is varied. Taxanes are now the most promising anti-cancer drugs with little side effects. Gene therapy expressing apoptosis-inducing proteins have ability to kill cancer cells while sparing normal cells. The present study was conducted for exploring the oncolytic effect of viral gene therapy expressing apoptosis-inducing proteins construct (ns1 +vp3), nanosomal paclitaxel as chemotherapeutic agent and surgical therapy in the management of spontaneous canine mammary tumours. Chemotherapy (nanosomal paclitaxel) (n=10), viral gene construct (ns1 +vp3) (n=10) and surgical therapy (n=10) were used in 30 female dogs of different breeds having different types of spontaneous mammary tumours. Chemotherapeutic drug and viral gene construct (ns1 +vp3) induced apoptosis in canine mammary neoplasms were studied using fluorescent activated cell sorting analysis. However, apoptotic percentage was significantly higher in chemotherapeutic group than viral gene construct therapy. No major side effects were observed in any groups. Matrix metalloproteinase-2 was found as an important prognostic tool in the management of canine mammary tumours. In conclusion, chemotherapy with nanosomal paclitaxel proved better than viral gene construct (ns1 +vp3) in the treatment of canine mammary neoplasm.

13.
Tissue Eng Regen Med ; 15(4): 477-492, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30603571

RESUMO

BACKGROUND: Stem cell is currently playing a major role in the treatment of number of incurable diseases via transplantation therapy. The objective of this study was to determine the osteogenic potential of allogenic and xenogenic bone-derived MSC seeded on a hydroxyapatite (HA/TCP) bioceramic construct in critical size bone defect (CSD) in rabbits. METHODS: A 15 mm long radial osteotomy was performed unilaterally in thirty-six rabbits divided equally in six groups. Bone defects were filled with bioscaffold seeded with autologous, allogenic, ovine, canine BMSCs and cell free bioscaffold block in groups A, B, C, D and E respectively. An empty defect served as the control group. RESULTS: The radiological, histological and SEM observations depicted better and early signs of new bone formation and bridging bone/implant interfaces in the animals of group A followed by B. Both xenogenous MSC-HA/TCP construct also accelerated the healing of critical sized bone defect. There was no sign of any inflammatory reaction in the xenogenic composite scaffold group of animals confirmed their well acceptance by the host body. CONCLUSION: In vivo experiments in rabbit CSD model confirmed that autogenous, allogenous and xenogenous BMSC seeded on bioscaffold promoted faster healing of critical size defects. Hence, we may suggest that BMSCs are suitable for bone formation in fracture healing and non-union.

14.
Indian J Exp Biol ; 55(2): 79-87, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30183232

RESUMO

Information on isolation, characterization of rabbit MSC and its evaluation in critical bone defect (CSD) is scarcely available. Here, we attempted to isolate, proliferate, differentiate, characterize and evaluate the in vivo osteogenic potential of bone marrow derived mesenchymal stem cells (BMSCs) collected from New Zealand White rabbits. They were isolated and proliferated in antibiotic supplemented DMEM (Dulbecco's Modified Eagle's media). Osteogenic differentiation of rabbit bone marrow derived mesenchymal stem cells (rBMSCs) was induced by osteogenic supplements and evaluated by alizarin red staining and alkaline phosphatase activity assay and characterized by specific CD surface antigen markers through FACS (Fluorescent activated cell shorting) and RT-PCR. Day '0' cells were round/oval and floating, and on day 3-5, cell attachment with spindle/polygonal/star morphology was seen. On subsequent passages, they assumed uniform spindle shaped morphology. After culturing in respective differentiation media rBMSCs showed increased alkaline phosphatase activity, intense alizarin red staining, blue staining for Alcian blue and deep red colour on oil red O staining supporting the osteogenic, chondrogenic and adipogenic differentiation ability. In vivo osteogenic potential of rBMSCs was evaluated in a 30 mm critical sized defect of rabbit radius. The cellular morphology of plastic adherent cells was seen as single cell form in P0 and in P1, P2 and P3, as elongated/spindle-shape in clusters. The rBMSCs were positive for CD44, CD73 and CD105 and negative for CD34 and CD45 and could differentiate to osteogenic cells in osteogenic induction media. The in vivo experiments in rabbit CSD model confirmed that rBMSCs promote faster healing of critical size defects. Hence, we may suggest that rBMSCs are suitable for bone formation in fracture healing and non-union.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Consolidação da Fratura/fisiologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Separação Celular , Modelos Animais de Doenças , Osteogênese/fisiologia , Coelhos , Fraturas do Rádio/terapia
15.
J Stem Cells Regen Med ; 12(2): 87-99, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28096633

RESUMO

Bone marrow derived mesenchymal stem cells (BMSC) represent an attractive cell population for tissue engineering purpose. The objective of this study was to determine whether the addition of recombinant human bone morphogenetic protein (rhBMP-2) and insulin-like growth factor (IGF-1) to a silica-coated calcium hydroxyapatite (HASi) - rabbit bone marrow derived mesenchymal stem cell (rBMSC) construct promoted bone healing in a large segmental bone defect beyond standard critical -size radial defects (15mm) in rabbits. An extensively large 30mm long radial ostectomy was performed unilaterally in thirty rabbits divided equally in five groups. Defects were filled with a HASi scaffold only (group B); HASi scaffold seeded with rBMSC (group C); HASi scaffold seeded with rBMSC along with rhBMP-2 and IGF-1 in groups D and E respectively. The same number of rBMSC (five million cells) and concentration of growth factors rhBMP-2 (50µg) and IGF-1 (50µg) was again injected at the site of bone defect after 15 days of surgery in their respective groups. An empty defect served as the control group (group A). Radiographically, bone healing was evaluated at 7, 15, 30, 45, 60 and 90 days post implantation. Histological qualitative analysis with microCT (µ-CT), haematoxylin and eosin (H & E) and Masson's trichrome staining were performed 90 days after implantation. All rhBMP-2-added constructs induced the formation of well-differentiated mineralized woven bone surrounding the HASi scaffolds and bridging bone/implant interfaces as early as eight weeks after surgery. Bone regeneration appeared to develop earlier with the rhBMP-2 constructs than with the IGF-1 added construct. Constructs without any rhBMP-2 or IGF-1 showed osteoconductive properties limited to the bone junctions without bone ingrowths within the implantation site. In conclusion, the addition of rhBMP-2 to a HASi scaffold could promote bone generation in a large critical-size-defect.

16.
Vet Surg ; 36(1): 80-7, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17214825

RESUMO

OBJECTIVE: To report the biomechanical properties of 3 external skeletal fixation (ESF) devices for use in large ruminants. STUDY DESIGN: In vitro biomechanical testing of ESF constructs. SAMPLE POPULATION: Adult buffalo (weighing, 250-350 kg) tibiae (n=27). METHODS: ESF constructs (bilateral linear fixator [BLF], 4-ring circular external fixator [CEF], and hybrid fixator [HF]) were made using mild (low carbon) steel implants plated with nickel and cadaveric buffalo tibiae. After ESF application, a 1 cm mid-diaphyseal gap was created. Constructs were loaded to failure, on a materials testing machine, in axial compression (n=5/ESF type) and craniocaudal bending (n=3/ESF type). In addition, 3 CEF constructs were tested in intact tibiae under craniocaudal bending. RESULT: In compression, HF was the strongest and most rigid construct; yield load was significantly higher for HF than for BLF or CEF. Under bending, both CEF and HF had similar strength and modulus of elasticity. Strength for BLF was higher than CEF and HF, whereas the reverse was true for modulus of elasticity. CONCLUSIONS: ESF made from mild steel for use in large ruminants could withstand

Assuntos
Búfalos , Fixadores Externos/veterinária , Fixação de Fratura/veterinária , Teste de Materiais/veterinária , Fraturas da Tíbia/veterinária , Animais , Fenômenos Biomecânicos , Búfalos/lesões , Búfalos/cirurgia , Cadáver , Fixadores Externos/normas , Fixação de Fratura/instrumentação , Fixação de Fratura/métodos , Fixação de Fratura/normas , Fixação Interna de Fraturas/veterinária , Teste de Materiais/normas , Níquel , Aço , Fraturas da Tíbia/cirurgia , Resultado do Tratamento
17.
Vet Surg ; 36(1): 88-97, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17214826

RESUMO

OBJECTIVES: To evaluate healing of a radial osteotomy repaired by application of dynamic axial fixation devices (DAF) in large ruminants. STUDY DESIGN: In vivo study of bone healing after application of 2 DAF types. Model I had 2 sidebars, each with a central cylindrical cuff (internally threaded) with 2 detachable connecting rods telescoping within the cuff. Model II had 2 side bars with 2 moveable clamps with multiple holes. SAMPLE POPULATION: Bull calves (n=8; aged, 1.5-2.0 years; weighing, 175-250 kg). METHODS: A mid-diaphyseal radial osteotomy was repaired by use of a model I (n=4) or model II (n=4) DAF. Calves were monitored for weight bearing, stability of fixation, and radiographically for fracture reduction, alignment and healing at intervals for 6 months. Fixators were removed when there was radiographic evidence of healing. RESULTS: Both the fixators were well tolerated with free movement of adjacent joints. Fragment fixation was maintained until healing in all but 1 model I calf where failure occurred within 7 days. Model II DAF provided more rigid fixation as indicated by early full weight bearing and fracture healing with less callus formation. Functional recovery of repaired limbs occurred within 60 days in surviving calves. CONCLUSIONS: Both bilateral DAFs were easy to apply; however, the model II DAF provided better fixation. CLINICAL RELEVANCE: The model II DAF made of low carbon steel was economical and may be useful for treating long bone fractures in large ruminants.


Assuntos
Bovinos/cirurgia , Fixadores Externos/veterinária , Fixação de Fratura/veterinária , Osteotomia/veterinária , Fraturas do Rádio/veterinária , Animais , Animais Recém-Nascidos , Fenômenos Biomecânicos , Fixadores Externos/normas , Fixação de Fratura/instrumentação , Fixação de Fratura/métodos , Consolidação da Fratura , Fixadores Internos/normas , Fixadores Internos/veterinária , Masculino , Teste de Materiais/veterinária , Osteotomia/instrumentação , Osteotomia/métodos , Fraturas do Rádio/cirurgia , Distribuição Aleatória , Resultado do Tratamento , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...